9th Oct, 2024 11:00

The Fine Collectors Sale

 
Lot 249
 

An Important Microscope Slide Cabinet of H.M.S. Challenger Soundings owned by Charles Elcock

The Cabinet:
English, c.1880, constructed of French polished mahogany, 2 doors opening to reveal a bank of drawers, label to inside of door reads 'ELCOCK - September 29th at 28 Fitzroy Avenue, Belfast, Harriet Sophia wife of Charles Elcock of a son, 1878', the top drawer containing a selection of slides, some by Elcock and others of diatoms and other subjects including one from the HMS Challenger Expedition, the bottom drawer containing a number of hand blown glass bottles and vials containing soundings from the HMS Challenger Expedition ( sounding dates, depths and locations corespond with the charts from 'VOYAGE OF THE CHALLENGER, WYVILLE THOMPSON, 1878', a copy of whihc is included in another lot), with 8 drawers of blank diatom slides and mounting equipment, the cabinet 59cm wide, 59cm tall, 33cm deep.

Charles Elcock (1834-1910) was a well known figure in the world of microscopy, particularly known for his expertise in creating microscope slides featuring foraminifera, a group of amoeboid protists characterized by their intricate shell structures. Born in Pontefract, Yorkshire, England, on August 18, 1834, Elcock was the second son of Charles and Mary Ann Elcock. The Elcock family were Quakers, a religious background that profoundly influenced Charles throughout his life, as reflected in his writings and humanitarian efforts during the Franco-Prussian War. Elcock's early career was varied, encompassing teaching and publishing, but it was his later work in microscopy for whihc he is remembered.

Early Life and Career.

Elcock's early years were marked by a strong education and a diverse set of experiences. After the death of his father in 1837, his mother took up teaching to support the family. Elcock attended the Friends' School at Rawdon, which was a formative experience given the Quaker values emphasized there. His early professional life included roles as a teacher and printer, and he maintained a close association with the Quaker community throughout. By the 1860s, Elcock was involved in publishing religious texts, which eventually led to his work in London and Gloucester, where he likely developed his interest in microscopy through his connection with Alfred William Bennett, a prominent member of the Royal Microscopical Society.

Microscopy and Foraminifera.

Charles Elcock's most significant contribution to science was his work with microscopy, particularly in mounting foraminifera on microscope slides. Foraminifera are microscopic marine organisms that produce a shell, often referred to as a "test," which can be quite intricate and beautiful. Elcock's slides were celebrated not just for their scientific utility but also for their aesthetic appeal. His work involved arranging these tiny shells meticulously on slides, often organizing them by species and orientation, which made his slides valuable for both scientific study and as objects of beauty.

Elcock's expertise in preparing these slides was widely recognized. He became a member of the Belfast Naturalists' Field Club shortly after moving to Ireland, where his skills in mounting foraminifera were lauded. In 1879, his work won a prize from the club for its artistic skill and superior finish. His techniques and methods were innovative, and he shared his knowledge through articles, most notably in the Journal of the Postal Microscopical Society, where he also advertised his slides.

Legacy and Impact.

Elcock's slides were distributed through well-known retailers in London, Manchester, and Bath, and they were highly regarded by contemporary scientists and hobbyists alike. Reviews of his work praised the meticulous attention to detail and the scientific value of the slides. His contributions to microscopy, particularly in the study of foraminifera, have left a lasting legacy in the field. While much of his life was also dedicated to religious writing and humanitarian efforts, it is his work in microscopy that has cemented his place in the history of science.

A large part of his original equipment and the slides he produced is held at the Whipple Museum of Science in Cambridge: https://www.whipplemuseum.cam.ac.uk/explore-whipple-collections/microscopes/foraminifera-slides-and-working-tools-microscope-slide-maker

Challenger Expedition: Revolutionizing Oceanography through Deep-Sea Soundings

The Challenger Expedition (1872-1876), a pioneering oceanographic endeavor, marked a turning point in our understanding of marine sciences. This British voyage, named after the HMS Challenger, was the first dedicated scientific exploration to systematically study ocean basins, marine life, and geology. Among its most critical contributions were the extensive soundings, temperature recordings, and water samples taken during the expedition, which have had a lasting impact on oceanography.

Deep-sea soundings, the process of measuring the depth of the ocean, were among the most revolutionary aspects of the Challenger Expedition. Utilizing newly developed sounding equipment, the expedition made nearly 500 soundings across the world’s oceans. These measurements were pivotal, not only in mapping the seabed but also in discovering the global patterns of oceanic trenches, underwater mountains, and plains.

Prior to the Challenger Expedition, the depths of the oceans were largely unknown. The sounding techniques employed involved lowering weighted lines, known as sounding lines, into the ocean until they reached the seabed. The depths recorded by Challenger revealed for the first time the complex topography of the ocean floor. One of the most significant findings was the Challenger Deep in the Mariana Trench, recorded as the deepest part of the world's oceans.

The data collected on these soundings provided foundational knowledge that spurred further scientific inquiry. For instance, the temperature profiles of ocean waters at different depths, also recorded during these soundings, helped scientists to begin understanding thermocline and its role in oceanic circulation patterns.

The implications of these findings were vast. They challenged previous notions of a lifeless deep sea by providing evidence of life at all depths, and the samples of sediment helped develop the fields of marine geology and paleontology. This wealth of data collected by the Challenger laid the groundwork for modern oceanography and prompted the establishment of permanent oceanographic institutions.

The Challenger Expedition was instrumental in transforming oceanography from a field cluttered with myths and speculations to a serious scientific discipline. Its soundings opened up new realms in the understanding of oceanic depths and laid down the benchmarks for future explorations, forever altering our relationship with the oceans. The expedition not only charted unknown waters but also set the course for future marine scientific endeavors, proving its legacy in the history of science.

Sold for £3,375

Result including buyers premium


 

The Cabinet:
English, c.1880, constructed of French polished mahogany, 2 doors opening to reveal a bank of drawers, label to inside of door reads 'ELCOCK - September 29th at 28 Fitzroy Avenue, Belfast, Harriet Sophia wife of Charles Elcock of a son, 1878', the top drawer containing a selection of slides, some by Elcock and others of diatoms and other subjects including one from the HMS Challenger Expedition, the bottom drawer containing a number of hand blown glass bottles and vials containing soundings from the HMS Challenger Expedition ( sounding dates, depths and locations corespond with the charts from 'VOYAGE OF THE CHALLENGER, WYVILLE THOMPSON, 1878', a copy of whihc is included in another lot), with 8 drawers of blank diatom slides and mounting equipment, the cabinet 59cm wide, 59cm tall, 33cm deep.

Charles Elcock (1834-1910) was a well known figure in the world of microscopy, particularly known for his expertise in creating microscope slides featuring foraminifera, a group of amoeboid protists characterized by their intricate shell structures. Born in Pontefract, Yorkshire, England, on August 18, 1834, Elcock was the second son of Charles and Mary Ann Elcock. The Elcock family were Quakers, a religious background that profoundly influenced Charles throughout his life, as reflected in his writings and humanitarian efforts during the Franco-Prussian War. Elcock's early career was varied, encompassing teaching and publishing, but it was his later work in microscopy for whihc he is remembered.

Early Life and Career.

Elcock's early years were marked by a strong education and a diverse set of experiences. After the death of his father in 1837, his mother took up teaching to support the family. Elcock attended the Friends' School at Rawdon, which was a formative experience given the Quaker values emphasized there. His early professional life included roles as a teacher and printer, and he maintained a close association with the Quaker community throughout. By the 1860s, Elcock was involved in publishing religious texts, which eventually led to his work in London and Gloucester, where he likely developed his interest in microscopy through his connection with Alfred William Bennett, a prominent member of the Royal Microscopical Society.

Microscopy and Foraminifera.

Charles Elcock's most significant contribution to science was his work with microscopy, particularly in mounting foraminifera on microscope slides. Foraminifera are microscopic marine organisms that produce a shell, often referred to as a "test," which can be quite intricate and beautiful. Elcock's slides were celebrated not just for their scientific utility but also for their aesthetic appeal. His work involved arranging these tiny shells meticulously on slides, often organizing them by species and orientation, which made his slides valuable for both scientific study and as objects of beauty.

Elcock's expertise in preparing these slides was widely recognized. He became a member of the Belfast Naturalists' Field Club shortly after moving to Ireland, where his skills in mounting foraminifera were lauded. In 1879, his work won a prize from the club for its artistic skill and superior finish. His techniques and methods were innovative, and he shared his knowledge through articles, most notably in the Journal of the Postal Microscopical Society, where he also advertised his slides.

Legacy and Impact.

Elcock's slides were distributed through well-known retailers in London, Manchester, and Bath, and they were highly regarded by contemporary scientists and hobbyists alike. Reviews of his work praised the meticulous attention to detail and the scientific value of the slides. His contributions to microscopy, particularly in the study of foraminifera, have left a lasting legacy in the field. While much of his life was also dedicated to religious writing and humanitarian efforts, it is his work in microscopy that has cemented his place in the history of science.

A large part of his original equipment and the slides he produced is held at the Whipple Museum of Science in Cambridge: https://www.whipplemuseum.cam.ac.uk/explore-whipple-collections/microscopes/foraminifera-slides-and-working-tools-microscope-slide-maker

Challenger Expedition: Revolutionizing Oceanography through Deep-Sea Soundings

The Challenger Expedition (1872-1876), a pioneering oceanographic endeavor, marked a turning point in our understanding of marine sciences. This British voyage, named after the HMS Challenger, was the first dedicated scientific exploration to systematically study ocean basins, marine life, and geology. Among its most critical contributions were the extensive soundings, temperature recordings, and water samples taken during the expedition, which have had a lasting impact on oceanography.

Deep-sea soundings, the process of measuring the depth of the ocean, were among the most revolutionary aspects of the Challenger Expedition. Utilizing newly developed sounding equipment, the expedition made nearly 500 soundings across the world’s oceans. These measurements were pivotal, not only in mapping the seabed but also in discovering the global patterns of oceanic trenches, underwater mountains, and plains.

Prior to the Challenger Expedition, the depths of the oceans were largely unknown. The sounding techniques employed involved lowering weighted lines, known as sounding lines, into the ocean until they reached the seabed. The depths recorded by Challenger revealed for the first time the complex topography of the ocean floor. One of the most significant findings was the Challenger Deep in the Mariana Trench, recorded as the deepest part of the world's oceans.

The data collected on these soundings provided foundational knowledge that spurred further scientific inquiry. For instance, the temperature profiles of ocean waters at different depths, also recorded during these soundings, helped scientists to begin understanding thermocline and its role in oceanic circulation patterns.

The implications of these findings were vast. They challenged previous notions of a lifeless deep sea by providing evidence of life at all depths, and the samples of sediment helped develop the fields of marine geology and paleontology. This wealth of data collected by the Challenger laid the groundwork for modern oceanography and prompted the establishment of permanent oceanographic institutions.

The Challenger Expedition was instrumental in transforming oceanography from a field cluttered with myths and speculations to a serious scientific discipline. Its soundings opened up new realms in the understanding of oceanic depths and laid down the benchmarks for future explorations, forever altering our relationship with the oceans. The expedition not only charted unknown waters but also set the course for future marine scientific endeavors, proving its legacy in the history of science.

Auction: The Fine Collectors Sale, 9th Oct, 2024

Viewing

 

Viewing of all lots is via appointment at our offices:

Flints Auctions Ltd

8 Rivemead

Pipers Way

Thatcham

RG19 4EP

Please contact our offices at +44 (0)1635 873634

View all lots in this sale

Images *

Drag and drop .jpg images here to upload, or click here to select images.